
Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 6; July-September, 2017, pp. 502-505
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Secure Coding for Mobile Payment Application
Aquil Ahmad Khan1 and Mayank Jain2

1,2ICERT, New Delhi
E-mail: 1akhan2786@gmail.com, 2engineermayankjain@gmail.com

Abstract—With the Government’s ‘Digital India’ initiative, the
share of online transactions and consequently the share of payments
made via mobile phones has been increasing. Mobile devices provide
a high level of accessibility; users have access to everything, all of
the time. However there is an inverse relationship between security &
accessibility and finding the right balance between the two when
building mobile payment applications is not only tricky but can also
determine its success or failure. This paper is presented as a list of
considerations for people managing and building mobile payment
services. Moreover, following the guidelines mentioned in this
document does not guarantee security of the application as the
mobile threat landscape is ever-changing.

Keywords: Secure Coding, Mobile Payment; Encryption; Security,
OWASP.

1. INTRODUCTION

Mobile computing is one of the greatest recent areas of growth
in the field of information technology. Our lives are impacted
by our mobile devices much more than the computers that we
leave have at our homes and workplaces. Unlike those
devices, our mobile phones are always on and we carry them
around with us. This makes them highly valuable targets for
malicious actors.

From the second quarter of 2013, smartphones or phones
capable of performing many of the functions of a computer
have been outselling feature phones. This explains the amount
of applications being developed for mobile phones, including
payments. Online transactions and consequently the share of
payments made via mobile phones has been increasing day by
day. Customers tend to abandon a payment service if, a
security flaw is discovered and the service does not provide
them with enough assurance of its security. This paper are to
be considered as such and do not replace any mandatory
requirements of the reader’s organisation. Moreover,
following the recommendations mentioned in this document
does not guarantee security of the application as the mobile
threat landscape is ever-changing.

2. THREAT LANDSCAPE

There are differences between security considerations for
personal computers and mobile devices. The important ones
are listed here:

 Mobile phones are easier to steal and/or lose. Research
has shown that 9 million mobile devices are either lost or
stolen globally every year, which is equivalent to 1 device
every 3.5 seconds;

 Mobile phones have limited input capabilities, so the
usage of long or complicated passwords has a huge
impact on the user experience and severely increases the
number of failed logins;

 mobile phones are designed as portable devices, so two
factor authentication mechanisms requiring the user to use
additional hardware (in addition to the mobile phone
itself) such as one time password generators are likely to
significantly hamper the service accessibility;

 Mobile phones interact with several hosts outside of the
user’s control. Generally no or weak mutual
authentication controls exists between the phone and a
third party. Third party applications might have access to
unprotected sensitive information stored and processed;

 The owner of a mobile phone (handset hardware) has
virtually no control on the device security configuration.
A mobile phone is generally chosen for its functionality
not security;

 Malware on mobile phones is rising fast and is apparently
causing a drop in the creation and use of new, computer-
related malware for the first time;

 Users are either unaware or tend not to worry about
malware on mobile phones, and have limited options to
deal effectively with it.

3. SECURE DESIGN

Developers need to build applications in a secure way.
However, it is not possible to spend all the time focusing on
security. The answer is to use good design principles, tools,
and mindsets that make security an implicit result - it's secure
by design. Then secure-by-design becomes a guiding principle
in how the software is built, from code to architecture.
Understanding principles, designs and patterns that promote
security is a fundamental requirement in building a secure
application.

Secure Coding for Mobile Payment Application 503

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 6; July-September, 2017

The Open Web Application Security Project (OWASP) lists
the following secure design principles:

 Minimize attack surface area: Every feature that is
added to an application adds a certain amount of risk to
the overall application. The aim for secure development is
to reduce the overall risk by reducing the attack surface
area.

 Establish secure defaults: There are many ways to
deliver an “out of the box” experience for users.
However, by default, the experience should be secure, and
it should be up to the user to reduce their security, if they
are allowed.

 Principle of Least privilege: The principle of least
privilege recommends that accounts have the least amount
of privilege required to perform their business processes.
This encompasses user rights, resource permissions such
as CPU limits, memory, network, and file system
permissions.

 Principle of Defense in depth: The principle of defense
in depth suggests that where one control would be
reasonable, more controls that approach risks in different
fashions are better. Controls, when used in depth, can
make severe vulnerabilities extraordinarily difficult to
exploit and thus unlikely to occur. With secure coding,
this may take the form of tier-based validation,
centralized auditing controls and requiring users to be
logged on all pages.

 Fail securely: Applications regularly fail to process
transactions for many reasons. How they fail can
determine if an application is secure or not.

 Don’t trust services: Many organizations utilize the
processing capabilities of third party partners, who more
than likely have differing security policies and posture
than you. It is unlikely that you can influence or control
any external third party, whether they are home users or
major suppliers or partners. Therefore, implicit trust of
externally run systems is not warranted. All external
systems should be treated in a similar fashion.

 Separation of duties: A key fraud control is separation of
duties. For example, someone who requests a computer
cannot also sign for it, nor should they directly receive the
computer. This prevents the user from requesting many
computers, and claiming they never arrived. Certain roles
have different levels of trust than normal users. In
particular, administrators are different to normal users. In
general, administrators should not be users of the
application.

 Avoid security by obscurity: Security through obscurity
is a weak security control, and nearly always fails when it
is the only control. This is not to say that keeping secrets
is a bad idea, it simply means that the security of key
systems should not be reliant upon keeping details hidden.

 Keep security simple: Attack surface area and simplicity
go hand in hand. Certain software engineering fads prefer
overly complex approaches to what would otherwise be
relatively straightforward and simple code. Developers
should avoid the use of double negatives and complex
architectures when a simpler approach would be faster
and simpler.

 Fix security issues correctly: Once a security issue has
been identified, it is important to develop a test for it, and
to understand the root cause of the issue. When design
patterns are used, it is likely that the security issue is
widespread amongst all code bases, so developing the
right fix without introducing regressions is essential.

4. SECURE CODING

Once the application has been constructed with the
fundamental principles of secure design in mind, it is
important to make sure that the code is written by developers
with experience in secure coding. An insecure code can open
the door to a variety of attacks such as:

 Improper Platform Usage

 Insecure Data Storage

 Insecure Communication

 Insecure Authentication

 Insufficient Cryptography

 Insecure Authorization

 Client Code Quality

 Code Tampering

 Reverse Engineering

 Extraneous Functionality

All of the above mentioned attacks might either allow an
attacker to execute code within the context of the mobile
application, or run queries on the databases located on the
mobile and (even worse) remote server. In general, the
developers should follow the checklist at [OWASP Secure
Coding Practices] while writing the code. They must also be
aware and up-to-date with the common vulnerabilities
associated with the platforms on which the application is
deployed.

Additionally, some important recommendations specific to
development of Android mobile applications are given below:

 Lock-down application permissions: It is necessary to
follow the principle of least privilege when assigning
permissions. Permissions should not be assigned unless
they are required. The application should be granted only
the minimum required permissions at the architecture

Aquil Ahmad Khan and Mayank Jain

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 6; July-September, 2017

504

level. For instance, READWRITE permissions should not
be granted when only READ permissions are required.

 Handle broadcast messages carefully: To handle event-
driven tasks, an application can register a broadcast
receiver that executes a function once it’s passed an intent
that matches specified criteria. Applications can send
broadcast intents, which allow another application to
receive it and process its data. Any object or data received
from the broadcast should be checked for invalid data or
exceptions before using it in an application.

 Be prudent while using broadcast messages for Inter-
Process Communication (IPC): The nature of broadcast
messages permits any application to receive a broadcasted
Intent. If broadcast messages are used for IPC, then a
malicious application may be able to gain access to
another application’s data. This is often a common
occurrence that demonstrates the lack of understanding
around broadcast messages. Use the local broadcast
manager if the intent needs to be broadcast locally. The
local broadcast manager allows intents to be broadcast
locally within the application so no other application can
gain unauthorized access to application data.

 Do not use insecure storage: When evaluating an
application’s storage usage, ensure that both online and
offline functionality of the application is evaluated. Look
specifically for code that allows storage of the data locally
and ensure that no sensitive data is stored on the client
side. At the architecture level, try to minimize the
sensitive data that needs to be stored on the device. If any
data needs to be stored, then encrypt it using a strong
algorithm prior to storage. Data that is stored in
/data/data/<package name of application> cannot be
accessed by another application unless the application
explicitly provides permissions or if the Android device is
rooted. Data that is stored in /sdcard can be accessed by
any application without the need for any special
permission or rooting. Hence, it is common for malicious
applications to access data in /sdcard.

 Avoid insecure storage in process memory: Data
processed by the application may be stored within
memory longer than necessary, which makes it more
susceptible to attack. An attacker with access to the phone
may be able to dump the memory of the process to gain
access to sensitive information such as usernames,
passwords, and other data. Analyse the classes that take
username, password, and account number as input. Try to
determine if the values are cleared in the memory after
use. If not, the application may expose sensitive
information if a memory dump can be obtained by an
attacker. The Dalvik runtime allows garbage collection,
but this does not allow a developer not to consider
memory management. It is never advisable for any
variable to hold sensitive information in it even when the
user is logged in. This is especially true when the user

logs off the application. At that point, all variables
holding sensitive information should be cleared by
initializing them to some junk values.

 Protect pending intents: The pending intents function
allows the intent in your application to be invoked by
another application. Just invoking the intent is not the
issue. The issue is that the application that invokes the
intent also executes at the same permission level as that of
the application that had the pending intent to be invoked.
The best and simplest approach is to find an alternative
for the pending intent which is as good as eliminating
risk. If a pending intent is an application requirement,
make sure that only a trusted application receives it. This
leaves no room for that intent to be used by an untrusted
application.

 Use WebView carefully and properly: The WebView
class is one of the most powerful classes, and it renders
web pages inside a normal browser. It also allows
applications to interact with WebView by adding a hook,
monitoring changes being made, add JavaScript, and
more. Even though this seems like a great feature, it
brings in security loopholes if not used with caution.
Since WebView can be customized, it creates the
opportunity to break out of the sandbox and bypass the
same origin policy.

 Obfuscate the code: The Dalvik byte code can be easily
reversed to obtain Java code that is very close to the
original Java code. This aids the attacker in understanding
application logic and also gain deeper understanding of
the application. dex2jar and JD-GUI are two free tools
that can be used to reverse engineer Android applications.
Code obfuscation is a method that involves mangling
code during the build process. The generated code is
difficult for humans to understand and increases the
amount of work required for reverse Engineering.

 Avoid Excessive logging: Client-side data logging
performed by Android applications has not garnered
much attention from a security standpoint. However,
during Android application review, we often see sensitive
user data like user names, passwords, and account
numbers written to application logs. This information can
be easily retrieved by an attacker if he is able to gain
access to the device. Perform proper exception
management, and always perform logging only to the
extent required. Sensitive data like account numbers and
passwords should not be logged.

 Perform data validation: Data validation issues in
Android are usually not considered as serious during
penetration testing or while performing a code review.
However, this is a mistake. WebView becomes vulnerable
to all browser attacks because WebView itself is a
browser instance and has all the capabilities of a browser.
An Android application can be coded in Java or native

Secure Coding for Mobile Payment Application 505

Journal of Basic and Applied Engineering Research
p-ISSN: 2350-0077; e-ISSN: 2350-0255; Volume 4, Issue 6; July-September, 2017

code, which is C++. When Java is used, many of the data
validation issues like buffer overflow, format string
issues, and others are eliminated, as the language itself is
not vulnerable. When using native code, special care
needs to be taken when data is read from an untrusted
source because it is vulnerable to issues like buffer
overflow, format string issues, and more. When
performing data validation code review, it is necessary to
identify the source and the sink. Source refers to the place
where the data is received. Sink refers to the place where
data is sent back to user. Once complete flow from the
source to sink is understood, we can easily identify what
kinds of issues there are, for example, XSS, SQL
injection, buffer overflow, and many more data
validation-related issues.

 Properly verify server certificate on SSL/TLS: Android
apps that feature online payments must use SSL/TLS
protocols for secure communication, and should properly
verify server certificates. The developer has the freedom
to customize their SSL implementation. The developer
should properly use SSL as appropriate to the intent of the
app and the environment the apps are used in. If the SSL
is not correctly used, a user's sensitive data may leak via
the vulnerable SSL communication channel. Insecure uses
of SSL include:

 Trusting all server certificate regardless of who
signed it, what is the CN (Common Name) etc.

 Allowing all hostnames, instead of verifying if the
certificate is issued for the URL the client is
connecting to.

 Mixing secure and insecure connections in the same
app or not using SSL at all.

5. CONCLUSION

Mobile application security is complicated, it is not just the
code running on the devices, there are innumerable other
factors like the device platform, web-services, cloud based 3rd
party services etc., which play a very important role in mobile
application security. This strategy should then translate to the
creation of a custom Secure System Development Life
Cycle(S-SDLC) for the development of organization mobile
applications. By putting an S-SDLC in place, mobile
application vulnerabilities can be identified and eliminated
well in advance of deploying the application, thereby resulting
in considerable saving on investment. Organizations should
perform a detailed analysis of their risk posture against all
possible known security threats to an application and use this
to create a mobile security strategy.

REFERENCES

[1] OWASP Mobile Security Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Pr
oject

[2] The protection of information in computer systems
http://www.acsac.org/secshelf/papers/protection_information.pd
f

[3] A short overview of Android banking malware
http://www.net-security.org/malware_news.php?id=2595

[4] Master key Android vulnerability used to trojanize banking
application
http://blog.trendmicro.com/trendlabs-security-
intelligence/masterkey-android-vulnerability-used-to-trojanize-
banking-app/

[5] Master key Android vulnerability
http://blog.trendmicro.com/trendlabs-security-
intelligence/trendmicro-solution-for-vulnerability-affecting-
nearly-all-android-devices/

[6] MWR attack on mobile ad networks
https://labs.mwrinfosecurity.com/blog/2013/09/24/webviewaddj
avascriptinterface-remote-code-execution/

[7] Mobile app top 10 risks
http://www.veracode.com/directory/mobileapp-top-10.html

[8] Lessons learned from five years of building more secure
software
http://msdn.microsoft.com/en-gb/magazine/cc163310.aspx

[9] Bank apps riddled withsec urity holes
http://finextra.com/news/fullstory.aspx?newsitemid=25601

[10] Android security overview
http://source.android.com/devices/tech/security/

[11] iOS security
http://images.apple.com/ipad/business/docs/iOS_Security_Feb1
4.pdf

[12] Windows Phone security http://www.windowsphone.com/en-
GB/business/security

